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Proteomics, the large-scale study of protein expression in
organisms, offers the potential to evaluate global changes
in protein expression and their post-translational modifica-
tions that take place in response to normal or pathological
stimuli. One challenge has been the requirement for substantial
amounts of tissue in order to perform comprehensive proteomic
characterization. In heterogeneous tissues, such as brain, this
has limited the application of proteomic methodologies.
Efforts to adapt standard methods of tissue sampling, protein
extraction, arraying, and identification are reviewed, with
an emphasis on those appropriate to smaller samples ranging
in size from several microliters down to single cells. The
effects of miniaturization on these analyses are highlighted
using neuroscience-related examples, as are statistical issues
unique to the high-dimensional datasets generated by pro-
teomic experiments. # 2008 Wiley Periodicals, Inc., Mass
Spec Rev 27:316–330, 2008
Keywords: 2D gel electrophoresis; imaging mass spectro-
metry; capillary electrophoresis; microdissection

I. INTRODUCTION

The last decade has seen a resurgence of interest in the study of
the proteome—the set of proteins that can be expressed by the
genetic material of an organism. Advancements in protein
extraction, purification, and identification have been driven
by improvements in sensitivity, throughput, and resolution of
separations and mass analyzers. However, proteomic approaches
have not advanced to the extent of genomic technologies.
Over the past 30 years, major technological innovations have
improved the throughput of genomic sequencing and analysis
techniques to the point where sequencing the complete genome
of organisms is commonplace. In addition, transcriptomic

analysis is feasible in samples as small as single cells.
Unfortunately, the analytical capabilities of proteomic techno-
logies lack the speed and robust characteristics of current
microarray methods. Given these limitations, why should one
pursue proteomic studies? Clearly, the promise implied in
proteomics is acquiring global information on changes in protein
expression, including post-translational modifications (PTMs)
from specific biological tissues under unique physiological
conditions. Such information certainly is relevant to biological
function, because proteins play an integral role in cell function.

It should not be surprising that changes in gene expression
might not correlate well with changes in protein expression
(Anderson & Seilhammer, 1997; Futcher et al., 1999); proteins
are activated by mechanisms such as precursor cleavages, PTMs,
and unique localization, which are not direct consequences of
changes in protein production. Furthermore, many physiological
responses of organisms are not always genetically mediated. For
example, homeostatic responses are relatively uniform despite
the genetic variability between specific individuals. One final, but
perhaps most important point, the lifetime of proteins can vary by
orders of magnitude so that the amounts of two proteins can be
surprisingly different even with similar translation rates. Thus,
proteomic characterization complements transcriptomic studies,
and might be more relevant for the characterization of complex
genetic and homeostatic phenomena.

Complexity presents a fundamental challenge in proteomics.
Although the genetic code is composed of four bases, the ‘‘protein
code’’ consists of over 20 amino acids plus many possible
PTMs. The genome for many organisms is known, and does not
vary between cells. Although each organism has only one genome,
it has many transcriptomes and even more proteomes. Protein
expression patterns differ among cell types, and physiological
changes alter these expression patterns; these alterations also differ
between specific cells of the same type.

Also of concern, tissues of interest can be microscopically
small and surprisingly heterogeneous, requiring the dissection
and characterization of specific cells from a region of interest.
Whereas recent technological developments have made micro-
dissection feasible (see below), extracting, separating, and
detecting the wide range of proteins present in extremely small
samples present significant issues. Geneticists have overcome
these obstacles with the development of the polymerase chain
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reaction to amplify DNA. However, analogous methods do not
exist for protein amplification.

In the classical proteomic workflow, one obtains the tissue of
interest, extracts proteins from the tissue, separates and/or arrays
the proteins, identifies proteins of interest, and quantifies changes
in protein expression and PTMs. Each step requires greater care
and expertise as the sample size decreases. Obligate losses during
the extraction and fractionation procedures become more of an
issue as one draws closer to the limits of protein detection.
Protein diversity decreases in small samples, and fewer proteins
will be abundant enough to exceed the sensitivity limit of
specific technologies. It also becomes more difficult to evaluate
differences between conditions with small sample sizes, because
variability increases as one operates closer to the limits of
the analytical techniques. Although information content is
decreased in smaller samples so that only higher abundance
compounds are detected, useful knowledge can still be gained,
even from a single cell (Rubakhin, Greenough, & Sweedler,
2003; Hummon, Amare, & Sweedler, 2006; Rubakhin et al.,
2006; Neupert et al., 2007; Predel et al., 2007; Rubakhin &
Sweedler, 2007).

The main focus of this review is to describe recent
developments that have made ‘‘microproteomics’’ a reality.
Sampling issues are covered first, followed by a discussion of new
methods that have been developed to improve the sensitivity
and selectivity of conventional sampling techniques, such as
laser capture microdissection (LCM). Approaches to protein
separation, including multidimensional separations and smaller
gels, are described. Improvements in mass spectrometric resolu-
tion and sensitivity are also presented, as well as innovative
statistical methods for analyzing and cataloging the complex
data generated by these experiments. Approaches to characterize
preselected proteins such as with immunoaffinity approaches or
GFP-labeling are not covered. Protein arrays based on antibodies
or other selective capture agents are an exciting area undergoing
rapid development, and have been the focus of several recent
reviews (Borrebaeck & Wingren, 2007; Lu & Liu, 2007; von
Eggeling, Melle, & Ernst, 2007). In this review, mass-
spectrometric-based identification methods are highlighted. We
briefly discuss recent developments, such as mass spectrometric
imaging (MSI), which bypass steps in the conventional
proteomic workflow and allow small samples to be characterized.
As the dynamic range of these cutting-edge technologies
improves, these ‘‘shorter’’ approaches may provide attractive
alternatives for the proteomic analysis of small samples.

II. TISSUE SAMPLING

The first and most critical issue facing anyone trying to analyze
small samples is how to acquire the optimal specimen of interest.
If a poor quality sample is obtained, or if proteins are degraded or
contaminated with other unwanted tissue types, then even the
best protein identification techniques will not rescue the experi-
ment. There are many possible techniques that can be employed;
choosing the appropriate one depends on experimental require-
ments. For example, if anatomical precision is not required, then
freehand microdissection can be used. Flow cytometry is useful

for identifying cells that express specific biomarkers, but
anatomic orientation and resolution is lost. These limitations
are also shared by some emerging technologies, such as diele-
ctrophoresis-activated cell sorting (Hu et al., 2005c), use of
optical tweezers (Grier, 2003), and immunomagnetic separation
(Safarik & Safarikova, 1999). Several approaches have been
developed to reproducibly obtain small samples of defined
anatomical regions. An excellent method for microscope-aided
microdissection in the CNS is described by Cuello and colleagues
(Cuello & Carson, 1983), which relies on the differential
light transmittance of myelinated and unmyelinated tissues in
fresh brain slices. Because myelination decreases light trans-
mittance, myelinated tissues appear dark when transilluminated
and unmyelinated tissues appear lighter. With 2–300 mm sec-
tions are used, this method can provide a surprising degree of
anatomical detail and precision. It is important to maintain
temperatures as close to freezing as possible while ensuring that
ice crystals do not develop during the microdissection process.
If they do, much of the anatomical resolution inherent
to transillumination is lost. Further, if temperatures rise, then
significant protein degradation can occur. The addition of
protease and phosphatase inhibitors to bath solutions should also
be considered to help improve the consistency of results.

Another useful sampling technique, the micropunch
method, was developed by Palkovits and Brownstein (1983).
Punch microdissection entails making small punches to remove
tissue from anatomically defined regions of fresh or frozen
samples, and can also be aided by the use of a loupe or dissecting
microscope. Although anatomical delineation is not as precise as
with transillumination, the ability to immediately snap-freeze
specimens and keep them frozen throughout the dissection
process is a huge advantage for proteomic studies. Micropunch
and transillumination both require substantial amounts of
technical skill and practice to obtain the requisite precision and
reproducibility.

When examining invertebrate neurons, individual cells can
be in the range of 20–500mm in diameter, a size that allows direct
sampling of these cells, from microdissection to subsequent
protease treatments in preparation for matrix-assisted laser
desorption/ionization mass spectrometry (MALDI MS) (Li,
Garden, & Sweedler, 2000). As shown in Figure 1, individual
neurons can be divided into subsections such as soma and
neurites, and each assayed for their neuropeptide content
(Rubakhin, Greenough, & Sweedler, 2003). Similarly, micro-
dissection and/or isolation of mammalian cells (e.g., red blood
cells, pituitary cells) have been demonstrated to be effective for
direct analysis using mass spectrometry (MS). Single cell
analysis of pituitary cells using MALDI MS has allowed positive
identification of 14 peptides derived from pro-opiomelanocortin
prohormone (Rubakhin et al., 2006). Similarly, using capillary
electrophoresis (CE) coupled to an electrospray ionization-
Fourier transform ion cyclotron mass spectrometer, Hofstadler
et al. (1995) were able to identify a- and b-chains of hemoglobin
from a few red blood cells. Furthermore, MALDI MS has been
shown to be robust in analyzing peptides in samples as small as
2 mm dense core vesicles (Rubakhin et al., 2000). Analysis at the
single cell or organelle level can provide a comprehensive view of
how an individual cell processes protein products with fewer
confounding factors.
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A relatively recent improvement in tissue sampling is the
development of LCM by Emmert-Buck and colleagues (Emmert-
Buck et al., 1996). This technique uses a finely-focused laser to
either cut around cells of interest or adhere them to a plastic
film, depending on the instrument. Slices of ethanol-post-fixed
tissues from 8–40 mm thick can be dissected, depending on the
instrument and exact technique employed. Several investigators
have adapted LCM to proteomic studies. As shown in Figure 2,
we demonstrated that LCM and the required ethanol postfixation
(30 sec in 70% ethanol) does not interfere with two-dimensional
gel electrophoresis (2D)E-based protein separation (Moulédous
et al., 2002). However, we found that conventional histological
staining methods in brain (cresyl violet, hematoxylin/eosin, and
toluidine blue) as well as some more unusual stains (chlorazol
black E, Sudan black B) did interfere with 2DE-based protein
separation (Moulédous et al., 2002). In some tissues, such as
kidney and esophagus, conventional tissue-staining techniques
can be used to provide anatomic detail without interfering with
protein recovery and identification (Banks et al., 1999; Emmert-
Buck et al., 2000). However, we have found that in brain, higher
stain concentrations are required and interfere with protein
recovery.

An alternative to direct sample staining is the technique
of ‘‘navigated’’ LCM (Wong et al., 2000; Moulédous et al.,
2003a). In this method, a stained section is used to guide the
dissection of an adjacent, unstained section of tissue. Accurate
image registration is necessary to ensure the success of this
technique, which can be accomplished by the use of a variety of
image analysis programs. Such fine dissections permit detailed
questions to be addressed; for example, what are the proteomic

changes seen in a specific type of cell expressing a specific
receptor? This issue can be elucidated by using ‘‘immuno-LCM’’
to harvest cells expressing specific markers (Moulédous et al.,
2003b). However, conventional avidin-biotin chemistry inter-
feres with protein extraction and 2DE. Craven and colleagues
also showed that immunogold staining in renal tissue resulted in
the loss of 60% of total protein (Craven et al., 2002). Fortunately,
fluorescently tagged antibodies do not significantly reduce
protein recovery, nor do they interfere with subsequent analyses
(Moulédous et al., 2003b). Moreover, immunostaining does
not significantly change the percentage of protein coverage for
proteins identified with peptide mass fingerprinting (PMF) after
2DE. Thus, with the aid of a fluorescent-capable LCM, more
detailed and precise studies can be undertaken. The tradeoff is
that much more starting tissue is required to perform proteomic
studies on specific subsets of cells.

Several groups have combined LCM with the technique of
differential in-gel electrophoresis (DIGE; also see section VII), a
technique to reduce measurement variability in 2D gels (Zhou
et al., 2002; Lee et al., 2003; Greengauz-Roberts et al., 2005;
Wilson et al., 2005; Kondo & Hirohashi, 2006; Sitek et al., 2006).
One recent study demonstrated the ability to detect 900 protein
spots on 2D gels generated from less than 1 mg of kidney
glomeruli using LCM followed by DIGE (Sitek et al., 2006).
Other modes of protein separation have also been effectively
coupled with LCM. One recent study captured approximately
1500 cells using LCM, then subjected the sample to nano-LC
followed by FT-MS identifications (Mustafa et al., 2007). Using
this approach, 4 proteins that were uniquely expressed in the
blood vessels of brain tumors were identified. Several investi-
gators have also shown that proteins can also be identified by
direct mass spectrometric analysis of laser-captured tissues using
MALDI-MS and SELDI-MS (Xu et al., 2002; Bhattacharya,
Gal, & Murray, 2003; Kwapiszewska et al., 2004; de Groot
et al., 2005; Guo et al., 2005; Krieg et al., 2005). Caprioli
and colleagues demonstrated that meaningful spectra could be
obtained from samples containing as few as 10 laser-captured
cells (Xu et al., 2002).

III. PROTEIN EXTRACTION

Once tissue samples have been obtained, the next step is to extract
the proteins from the tissue. Although this step is perhaps the
most critical one in performing a successful proteomics experi-
ment, it has been given the least attention by current investigators.
All extractions are aimed toward an elusive and as yet unachieved
goal, the complete extraction of all proteins from a sample. The
wide range of physicochemical properties of cellular proteins and
their differing solubilities make it difficult to efficiently extract all
proteins, which range in size from small cytoplasmic signaling
molecules to lipophilic, megadalton membrane receptors.
However, the introduction of new techniques and optimization
of classical methods have improved extraction efficiencies for
small samples. Extractions have been categorized from ‘‘gentle’’,
which consists of osmotic, chemical, or enzymatic treatments
or mild grinding, to ‘‘vigorous’’, which are active mechanical
cellular disruption methods (Scopes, 1994). In order to achieve as

FIGURE 1. Direct profiling of the subcompartments of an individual

neuron using MALDI TOF. A: Transmission light micrograph of a

cultured bag cell neuron after 30 min of 4% paraformaldehyde fixation,

extracellular solution removal, neuron dehydration, and MALDI matrix

application. B: MALDI mass spectral profile of the cultured bag cell

obtained from the cell soma and neurites, postparaformaldehyde

fixation. Peaks are labeled based on the accurate mass match to a single

known neuropeptide prohormone: e-BCP, epsilon bag cell peptide; AP,

acidic peptide; ELH, egg laying hormone. Reprinted with permission

from Rubakhin, Greenough, and Sweedler (2003), copyright 2003

American Chemical Society.
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complete an extraction as possible, most investigators use
a combination of cellular disruption and treatments with
strong detergents and chaotropes. Although mechanical cell
disruption might improve extraction efficiencies over simple
chemical extraction, there is no method of cell disruption that
is clearly superior for small samples. The only limitation is
the size of the probes or vessels available for sample process-
ing. Ultrasonication, homogenization, freeze-thawing, pressure-
cycling, and bead mills have all been used (Schutte & Kula,
1990a,b; Hopkins, 1991; Melendres et al., 1991; Belo et al., 1996;
Raynie, 2004; Butt & Coorssen, 2006; Flanagan et al., 2006;
Smejkal et al., 2006). We have had success in using ultra-
sonication with small-diameter probes. Methods such as bead
mills and pressure cycling, an extension of the old ‘‘french
press’’ technology, are currently difficult to use with the smallest
samples. However, they do have potential advantages for certain
types of tissues and extractions that warrant re-examination when
the equipment has been appropriately miniaturized. Care must be

taken to avoid any heating of the sample during cell disruption,
which can degrade proteins prior to subsequent analyses.

Chemical solubilization, the second phase of the process, has
also improved markedly over the past several years. Solubilization
has three major components: (a) minimize interactions between
proteins as well as between proteins and other substances
(e.g., nucleic acids, lipids); (b) remove contaminants; and
(c) prevent protein precipitation during the process of protein
separation (Rabilloud, 1996). The chemical strategies employed
are dependent on (a) whether the proteins are needed in their native
or a denatured conformation; (b) which nonprotein substances
need to be removed from the sample; and (c) the subsequent
separation technology to be used. The goal of denaturation is to
eliminate protein interactions by disrupting noncovalent bonds as
well as covalent disulfide bonds. This will disrupt secondary and
tertiary protein structure and so is not desirable when examining
protein complexes. However, denaturation improves the ease and
effectiveness of extraction. A wider variety of solvents and

FIGURE 2. The effect of tissue fixation and LCM on 2D gel-based protein separation. Samples of the rat

brain region called the striatum were used to determine whether fixation or dissection method affected

protein separation using 2-D gel electrophoresis. Three conditions were tested: samples were either

manually dissected without fixation, fixed in ethanol and then manually dissected, or fixed and dissected

using LCM. Twenty-five microgram of total protein was loaded onto immobilized pH gradient (IPG)

strips and separated by 2-D gel electrophoresis as described. A: Unfixed, unstained, manually dissected

sample. B: Ethanol-fixed, manually dissected sample. C: Ethanol-fixed, LCM sample. D: Number of spots

detected on each gel. Results are expressed as mean� SEM of three independent experiments. No

statistically significant difference was observed between any of the treatment groups. Reprinted with

permission from Moulédous et al. (2002), copyright 2002 Association of Biomolecular Resource Facilities.
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cosolvents can be used within the constraints of the subsequent
separation technology. There are excellent reviews available on
this subject (Deutscher, 1990; Rabilloud, 1996; Molloy et al.,
1998; Herbert, 1999; Santoni et al., 1999). However, it is important
to be aware that any protocol that involves precipitation or phase-
partitioning of proteins will be more difficult to use with smaller
samples. Manipulations result in some protein losses, which in the
case of small samples, might mean the loss of an unacceptably high
percentage of the total protein available.

Recently, Wang and colleagues developed a microscale,
high-througput extraction and sample preparation method for
LC-MS using the organic solvent triflouroethanol (Wang et al.,
2005). These promising findings suggest a new direction for the
extraction and separation of extremely small samples, minimiz-
ing protein losses due to sample handling and multiple extraction
procedures. Also, application of the emerging field of nano-
technology to the extraction and separation of proteins suggests
that more thorough coverage of the proteome from samples
as small as a single cell may soon be possible (Hellmich
et al., 2005; Ivanov et al., 2006). Recently, the detection of
single proteins, some of low abundance, from individual cells has
been demonstrated (Cai, Friedman, & Xie, 2006; Huang et al.,
2007).

IV. SEPARATION OF PROTEIN MIXTURES

There are limits to the number of proteins that can be detected and
identified from a single protein mixture. It has been estimated that
the average cell expresses 10–15,000 unique proteins (Hastie &
Bishop, 1976), and has perhaps an order of magnitude higher
chemical diversity due to chemical modifications; however, the
highest resolution separation methods currently available can
only distinguish a few thousand distinct species (Anderson,
1995). Therefore, sample complexity should be reduced or many
constituents will remain unidentified. A commonly suggested
first step is fractionation of cells to focus on a specific organelle
or region (e.g., synaptic cleft) of interest. Taken to an extreme, a
tissue can be fractionated so that only a single compound
will be isolated via immunohistochemical approaches. However,
Subcellular fractionation methods require relatively large
amounts of starting material, and it can be difficult to obtain a
completely pure subcellular fraction (Pasquali, Fialka, & Huber,
1999). Nevertheless, these techniques could be used to obtain
small amounts of a specific organelle needed for study (e.g.,
mitochondria, synaptosomes) when enough tissue is initially
available. Several recent examples highlight the ability to
perform proteomic measurements on synaptic fractions (Collins
et al., 2006; Burre, Zimmermann, & Volknandt, 2007; Moron
et al., 2007). Other specialized capillary-scale separations can
be used for high sensitivity characterization of small-volume
organelle sampling (Olson, Ahmadzadeh, & Arriaga, 2005).
Another approach to decrease sample complexity is sequential
extraction. For example, a hypotonic lysis buffer with mild
detergent can be used to extract cytoplasmic proteins followed by
a buffer that contains strong detergents and chaotropes to extract
less soluble (membrane) proteins. Although each step results in
some sample loss (Molloy et al., 1998; Herbert, 1999), sequential

extraction provides a straightforward approach to fractionate
smaller tissue samples (100–250 mg) with less protein loss. We
have found that with samples under 50 mg total protein content,
wide-ranging single-stage protein extractions appear to provide
the best compromise between detectable protein diversity and
sample loss.

Given these issues, what are the choices available to separate
these protein/peptide mixtures? Most available methods are
based on chromatographic or electrophoretic techniques, or
some combination of the two. Liquid chromatography (LC) has
become one of the most common methods to separate proteins,
allowing their identification via MS. With a reverse phase
column, peptides, normally in the presence of an ion-pairing
reagent, separate based on hydrophobic interactions with the
stationary phase. Similarly, ion-exchange columns separate
analytes based on charge, and size-exclusion columns based
on molecular size. The peak capacity of a separation is an
indication of how many different analytes can be separated in
a single separation (Giddings, 1991). Normally, the peak
capacity (maximum number of theoretical resolution planes)
of LC is several hundred, so that an LC separation interfaced to
a mass spectrometer can be used to identify several hundred
peptides (some degree of peak overlap is acceptable with MS
detection). Because many samples have greater complexity,
multi-dimensional chromatographic separation methods have
been developed. These combined systems have vastly improved
peak capacities (Giddings, 1991; Davis & Blumberg, 2005) and
allow much more complex samples to be studied; thus, they are
well suited to proteomic experiments. In these methods, the
mixture is separated in stages, with subsequent separations
based on differing properties. For example, the analytes can be
separated by charge, pH, hydrophobicity, size, and ability to
bind to specific stationary phases, to name a few. The number of
different combinations of techniques that have been used is quite
large (Evans & Jorgenson, 2004).One specific method of analysis
that involves several stages of separation followed by MS
analysis has been termed ‘‘MudPIT’’ (multidimensional peptide
identification technology) (Washburn, Wolters, & Yates, 2001).
MudPIT involves the combination of two chromatographic
approaches (strong cation exchange and reverse phase) directly
coupled to a mass spectrometer. Protein samples are first digested
into component peptides, applied to the chromatographic
system, and then eluted in cycles before being introduced to
the second stage. Each cycle involves eluting peptides from the
ion exchange (SCX resin) with a specific salt concentration,
followed by a solvent gradient of increasing hydrophobicity to
separate peptides on the reverse phase column; every subsequent
cycle begins with an increased salt concentration. Often, the
separation by cation exchange resin is performed offline, and the
fractions are individually processed through reverse-phase liquid
chromatography coupled to the mass spectrometer. Although this
offline method is time consuming, there is an increase in the
number of peptides identified compared to the direct SCX-
reverse phase-high performance LC; for example, more than
5000 peptides were characterized in a single experiment by Li
et al. (2005b). In general, such methods require large amounts of
strating material as there tend to be protein losses with each
fractionation step. Hence, MudPIT is not currently useful for the
analysis of smaller samples.
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Electrophoretic separations for proteins are among the older
separation modes (Tiselius, 1937), and are often used to simplify
complex mixtures. Electrophoretic techniques have usually been
associated with the use of a gel matrix to assist with the separation
(Andrews, 1989). Simple one-dimensional separations by mole-
cular weight can be used, as well as 2DE, as pioneered by
O’Farrell and Klose in the 1970s (Klose, 1975; O’Farrell, 1975).
Conventional 2DE first separates proteins by their isoelectric
points and second by molecular weights. Under ideal circum-
stances, electrophoresis can be used to resolve hundreds to
thousands of individual proteins. However, scaling laws
favor miniaturization, so that small 2DE separations have long
been known to have advantages for volume-limited samples
and for high separation efficiencies (Ruchel, 1977; Poehling
& Neuhoff, 1980). We have had good success with ‘‘minigel’’
formats (first dimension isoelectric focusing strips 7–11 cm
wide, and second dimension sodium dodecyl sulfate polyacry-
lamide gel electrophoresis, or SDS-PAGE gels) for micro-
proteomic applications.

The multiple steps in the 2DE process can lead to protein
losses (Zhou et al., 2005). Although 2DE has had a reputation for
being slow, difficult, and poorly reproducible, these issues have
been largely resolved with the development of immobilized
pH gradient strips that provide more consistent separations in the
first dimension, as well as electrophoretic devices capable of
running multiple gels quickly and consistently (Gorg et al., 2000)
A renewed interest in radiolabeling strategies (Vuong et al., 2000)
and the development of more sensitive fluorescent protein
stains (Patton, 2002) have markedly improved detection
sensitivity. There have been efforts to directly analyze samples
from gel-based separations or through a intermediate transfer to a
polyvinylidene fluoride membrane using MALDI time-of-flight
MS; however, this approach has yet to be widely applied (Gusev,
2000).

Capillary electrophoresis (CE) is a method that combines
several features of column chromatography and electrophoresis.
In this method, analytes are introduced into a buffer (conducting
electrolyte) and injected onto an open capillary. When a potential
is applied, the analytes migrate along the capillary with
their velocity depending on their electrophoretic mobility and
electroosmotic (buffer) flow (Jorgenson & Lukacs, 1983). During
electrophoretic separations one applies a current across a
solution, which generates heat. This heat tends to disturb the
separation process. In CE, heat dissipation is more effective as
the capillary diameter is reduced, so that smaller capillaries
can be used with higher voltages to improve and speed up
separations. Like LC, CE can be directly interfaced with mass
spectrometers. However, combining CE with an MS instrument
presents several challenges, because the mass of the material in
a nanoliter-volume (or smaller) analyte band is difficult to
characterize with MS. Reviews of how these challenges have
been overcome include Simpson and Smith (2005), Banks
(1997), and others (Ohnesorge, Neususs, & Watzig, 2005).

There are several operational modes of separation by CE that
have been interfaced with a mass spectrometer, notably, capillary
zone electrophoresis (CZE) and capillary isoelectrofocusing
(CIEF). CZE is similar to LC in that proteins are injected onto the
column, and the components are separated into discrete bands
that elute from the capillary and are subsequently introduced into

the mass spectrometer. CIEF is similar to the gel-based approach
because the separation is based on the pI (Shen & Smith, 2002). A
direct comparison of LC, CZE, and CIEF for analyses of yeast
cytosol digest showed that the CE methods have a high resolving
power, separation efficiency, and shorter run times compared to
LC (Shen et al., 2000). However, CIEF allows more material to be
introduced into the capillary (Cooper, Wang, & Lee, 2004).
Smaller sample volumes suggest that CE would be an ideal tool
for microproteomics. However, these small sample bands mean
that a smaller dynamic range of proteins can be detected. Taken
together, these characteristics suggest that CE separation would
be well-suited for the last stage of a comprehensive multistage
separation, or as a sole technique for the smallest samples.

V. IDENTIFICATION OF PROTEINS USING MASS
SPECTROMETRY (MS)

As mentioned earlier, one challenge in sequencing proteins arises
from the complexities inherent in having 20 amino acid building
blocks and a variety of PTMs. This complexity is even greater
because protein translation levels differ both temporally and
spatially. Gel- and immunohistochemical-based methods to
identify proteins have been used successfully in a wide variety
of samples. Edman degradation has also been a powerful
approach. However, the throughput of these methods is low.
Although MS technologies have been utilized for decades, it was
only with the development of ionization methods that allow large
protein molecules to be introduced into mass analyzers has MS
been widely applied to proteomics. Specifically, ESI and MALDI
revolutionized protein characterization (Tanaka et al., 1988;
Hillenkamp et al., 1991; Karas, Bahr, & Gießmann, 1991). In
MS-based methods, much smaller sample amounts are required
to sequence a peptide. Amounts can be in the attomole or even
zeptomole range under ideal circumstances.

All mass analyzers require the ionization of a protein
molecule in the gas phase; therefore, inefficiencies in the
vaporization and ionization processes can often limit overall
system performance. Because it is easier to ionize and character-
ize peptides, proteins are often cleaved into complex peptide
mixtures prior to measurements. In this so-called ‘‘bottom-up’’
approach, a protein is digested into its component peptides with
enzymes such as trypsin or chymotrypsin, and the peptides
characterized with MS. Once the peptide sequences are
confirmed, they are matched to precursor proteins using various
databases, in an approach called peptide mass fingerprinting
(PMF) (James et al., 1993). This ‘‘bottom up’’ approach has been
widely used.

Global proteomics by means of PMF normally requires the
detection of multiple peptides to unambiguously identify the
protein; measuring the peptides with sufficiently high mass
accuracy can permit proteins to be identified based on fewer
peptides. This method also uses accurate mass information and
the retention times from a list of previously identified peptides to
decrease the sequencing time spent on those peptides by the mass
spectrometer. In a report that demonstrated the utility of this
global approach to proteomics, 61% of the predicted peptides in
the Deinococcus radiodurans proteome were identified (Lipton
et al., 2002).
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A newer protein identification strategy is the ‘‘top-down’’
approach, which uses extremely accurate masses of intact
proteins obtained from a Fourier transform mass spectrometer
as well as masses obtained from their subsequent CID
fragmentation to identify proteins (Kelleher, 2004; Han et al.,
2006). A major advantage of the ‘‘top-down’’ approach is its
robustness for analyzing modified proteins (Pesavento et al.,
2004). The ‘‘bottom-up’’ approach will miss PTMs located on
peptides that are not identified via MS.

VI. INTEGRATING TISSUE SAMPLING AND
CHARACTERIZATION IN A SINGLE STEP:
MASS SPECTROMETRIC IMAGING (MSI)

Usually, scientists utilize immunohistochemical techniques to
determine protein localization in a tissue, and MS to identify
proteins of interest. However, over the last 30 years several forms
of probe-based MS have been adapted to protein localization
studies. Recently, Caprioli and others have pioneered the
adaptation of MALDI MS to image proteins in their anatomical
context in tissue samples (Spengler, Hubert, & Kaufmann, 1994;
Stoeckli, Farmer, & Caprioli, 1999; Stoeckli et al., 2001; Todd
et al., 2001; Altelaar et al., 2005; Caldwell & Caprioli, 2005;
Crecelius et al., 2005; Jurchen, Rubakhin, & Sweedler, 2005;
McDonnell et al., 2005; Rubakhin et al., 2005; Monroe et al.,
2006). In MALDI MSI, a tissue section is prepared and matrix is
applied. The laser is focused onto a discrete point, and a mass
spectrum acquired. At each point, the amount of tissue sampled is
in the nanoliter-volume range; thus, this approach is inherently
microproteomic. The laser is rastered across the sample to obtain
spatially resolved mass spectra, creating a ‘‘spectral image’’ of
the tissue sample. Because imaging requires the acquisition of
thousands of spectra, MSI is heavily dependent on instrumental
and data-storage capabilities. One advantage of this approach is
that because minimal sample handling is required, protein losses
are reduced. However, the depth of proteomic coverage is less
than when conventional separations are performed. Also, the
procedures used to collect and prepare samples for MSI are
critical, especially when analyzing phosphoproteins or neuro-
peptides, both of which can be quickly modified or degraded if
sample preparation is suboptimal. New, innovative ionization
methods such as desorption electrospray ionization (DESI) are
also being applied to MSI. In contrast to MALDI, DESI permits
images to be created from tissue slices under ambient conditions
(Cooks et al., 2006). This method performs well, but its upper
mass range must be extended before its application to biomedical
proteomics is practical. Because MSI is a rapidly changing field,
readers are encouraged to examine recent publications devoted to
this technology, such as (Heeren & Sweedler, 2007).

VII. QUANTIFICATION OF PROTEIN
EXPRESSION DIFFERENCES

Often, some of the most important information gained from
a proteomic study is the determination of differences in protein
expression between experimental conditions. Although one

frequently uses the term quantification to indicate the absolute
amount of a material (in concentration or mass), in most
proteomic measurements, the term implies relative abundance,
such as the percent change between two treatment groups.
Quantification is usually done after the sample is fractionated, but
can be performed either before or after protein identification. The
advantage of quantifying before identification is that efforts
can then be focused on identifying only those proteins that
are differentially expressed. Quantification can follow either a
gel-based separation, by comparing differences in the intensity of
corresponding spots, or after MS measurement, by evaluating
differences in the intensities/areas of corresponding mass
spectral peaks. Because of the expense and effort required for
many proteomic measurements, care must be taken to ensure that
the experimental design balances the running of samples from the
different groups to avoid any systematic bias. There are
numerous case studies that illustrate the dangers of design flaws
that can lead to systematic bias in proteomic studies (e.g., see
Baggerly et al., 2004a; Baggerly, Morris, & Coombes, 2004b;
Baggerly, Coombes, & Morris, 2005a; Baggerly et al., 2005b;
Hu et al., 2005a). This problem can be avoided by applying
standard experimental design principles such as blocking and
randomization, as described in standard textbooks (e.g., Box,
Hunter, & Hunter, 2005), within the laboratory setting.

How is quantification performed? Gel-based methods
usually involve fluorescent and some visible stains, as well as
radiolabeling. The relationship between spot intensity and
protein amount is linear for these stains over several orders of
magnitude. Silver stains do not have as linear of a relationship,
and are applied less frequently for quantification. DIGE is a
method that can reduce variability by running control and
treatment samples together on the same gel, as well as a pooled
sample from the two groups. Dyes with different spectral
characteristics are used to detect and quantify spots from the
different groups. The most common set of dyes are the Cy dyes
(Friedman, 2006). Although these approaches are well validated,
areas that can be improved when working with the smallest
samples include the use of more efficient (saturation) protein
labeling, use of more sensitive dyes, and reducing the effect that
dyes have on changing protein migration.

After scanning the gels for a given experiment, a key
quantitative challenge is to detect spots on the gels while filtering
out artifacts, and to match the spots across gels and quantify
them. Assuming N gels and p protein spots in the set, the goal
of this step is to construct an N-by-p matrix that contains the
protein expression values for each spot for each gel, which can
be surveyed to identify those proteins related to the factor of
interest. Various commercial and noncommercial methods
have been developed to accomplish this goal, but unfortunately,
these methods encounter numerous difficulties that limit their
effectiveness, especially for larger studies. Various errors, such as
spot detection, spot matching, and spot boundary estimation
errors, are typical and reduce the probability of finding protein
expression differences in the data. These problems tend to
accumulate with larger studies, and encourage some investigators
to perform smaller studies that are underpowered to find realistic-
sized differences (Fig. 3).

In response to these problems, we have developed an
approach for preprocessing 2DE data called Pinnacle (Morris,
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Clark, & Gutstein, 2007). The name derives from the fact that,
unlike most existing methods, this method performs spot
quantification using pixel intensities at peak spot intensity values
in the horizontal and vertical dimensions (pinnacles) rather
than spot volumes. The underlying philosophy is to keep the
preprocessing as simple as possible in order to avoid any
extra bias and variance that can result from the propagation of
errors that characterize more complex methods. The steps of the
Pinnacle method are as follows:

1. Align the 2DE gel images.

2. Compute the average gel, averaging the staining intensities
across gels for each pixel in the image.

3. Denoise the average gel using the two-dimensional
undecimated discrete wavelet transform (UDWT).

4. Detect pinnacles on the denoised average gel, which are
pixel locations that are local maxima in the horizontal and
vertical directions with an intensity above some minimum
threshold (e.g., the 75th percentile for the average gel).

5. Perform spot quantification on the individual gels by taking
the maximum intensity within a stated tolerance of each
pinnacle location.

Assuming p pinnacles are detected on the average gel, one
obtains an N-by-p matrix of spot intensities that can be surveyed
for potential biomarkers.

This method is significantly quicker and simpler than the
typical spot detection algorithms used in 2DE, which perform
spot detection on individual gels with complex spot definitions,
quantifying spot volumes, and matching spots across gels.
This usual approach is time-consuming and error-prone, and is
especially problematic for larger studies, because these errors
propagate as the number of gels increases. It takes a great deal
of time-consuming hand-editing to try to fix these errors. Further,
the process of estimating spot boundaries is also difficult and
error-prone, and leads to increased coefficients of variance
when spot volumes are used to quantify the proteins. Simulation
studies have demonstrated that the Pinnacle method leads to more
reliable and precise quantifications (Morris, Clark, & Gutstein,
2008). Statistical principles suggest that performing spot
detection on the average gel leads to greater sensitivity and
specificity, because true protein spots are reinforced across gels
whereas artifacts and noise average out. As a result, this method
has the potential to reliably detect and quantify fainter spots, thus
increasing the realized dynamic range of the technology (Fig. 4).

VIII. MASS
SPECTROMETRIC-BASED QUANTIFICATION

The ability to detect a protein via MS depends on multiple
variables, including vaporization/desorption and ionization
efficiency (which depend on sample constituents besides proteins),
and losses during separation and sample handling. Thus, it is
difficult to directly compare peaks between treatment groups
unless these variables are constant. Although a direct correlation
between peak intensities from two samples is challenging,
evolving methods use parallel MS experiments for a direct com-
parison of the peptide peaks (Wiener et al., 2004). Perhaps the most
common method for quantification involves tagging the proteins
with labels that differ only by stable isotopes (Fricker et al., 2006).
Using such methods, proteins in two or more proteome samples are
tagged with different isotopic tags that vary in their molecular
weight but are chemically nearly identical; thus, any sample or
ionization differences between the two can be corrected, and their
peak intensities directly correlated to their concentrations. Several
different chemical tags using H/2H, 12C/13C, 16O/18O, or 14N/15N
isotopes have been reported (Leitner & Lindner, 2004; Righetti
et al., 2004).

One can avoid the requirement for derivatizing peptides/
proteins with the isotopic label by using in situ labeling. For

FIGURE 3. Comparison of yeast cytosol tryptic digest (at 5 mg/mL)

using three different CE separation modes. A: Capillary isoelectric

focusing (CIEF); B: capillary zone electrophoresis (CZE); and C: reverse

phase LC. The concentration used for CIEF was 16-fold lower than

the samples used for CZE and LC. Reprinted with permission from Shen

et al. (2000), copyright 2000 American Chemical Society.
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example, isotopic labeling of proteins in cell cultures is achieved
by using stable isotope-enriched amino acids in the culture media
(known as SILAC) (Ong, Foster, & Mann, 2003). This method is
used for cell cultures under different conditions and allows the
quantification of the expression levels of hundreds of proteins,
thus promising insights into cell signaling pathways and also
several interconnected signaling pathways.

Methods similar to Pinnacle discussed above have also
been developed to detect and quantify peaks in one-dimensional
MS data, such as MALDI MS and surface-enhanced laser
desorption-ionization (SELDI) MS (Coombes et al., 2005;
Morris et al., 2005). Stand-alone software is freely available for
applying the method to MS analysis (Karpievitch et al., 2007).
The steps are as follows:

1. Align the spectra on the time scale by choosing a linear
change of variables for each spectrum in order to maximize
the correlation between pairs. We have found that align-
ment can be done much more simply and efficiently on
the time scale rather than the m/z scale.

2. Compute the mean of the aligned raw spectra.

3. Denoise the mean spectrum using the UDWT.

4. Locate intervals that contain peaks by finding local maxima
and minima in the denoised mean spectrum.

5. Quantify peaks in individual raw spectra by recording
the maximum and minimum height in each interval,
which should contain a peak. This quantification method
implicitly removes the baseline artifact.

6. Calibrate all spectra using the mean of the full set of
calibration experiments.

Assuming that a total of p peaks are detected on the average
gel, an N-by-p matrix of peak intensities is obtained for the N
spectra in the study that can be surveyed for potential biomarkers.

A key component of these approaches as described for two-
and one-dimensional data is that we perform peak (or spot)
detection on the average spectrum (gel), rather than on individual
spectra (gel); a number of advantages are obtained (Morris et al.,
2005). First, it avoids the difficult and error-prone peak-matching

FIGURE 4. Typical average gel with detected pinnacles. The average gel was created by taking the

pixel-wise average over 28 gels in a dilution series created from Escherichia coli lysates by Nishihara and

Champion (2002) (gels provided courtesy of Dr. Kathleen Champion-Francissen). ‘‘Hotter’’ colors indicate

regions of higher intensity, whereas ‘‘cooler’’ colors indicate lower intensities. Intensities above 350 were

removed from the scale to improve contrast. The units of the x and y axes are pixel distance from the origin

(upper left corner of the image). White ‘‘x’s’’ mark the 1,380 pinnacles detected using Pinnacle, which

represent local maxima in the x- and y-directions with intensities greater than 47.2, the 75th percentile

intensity on the average gel. Note that a wide range of spot (pinnacle) intensities are detected, whereas

artifacts are minimized by the averaging process. Reprinted with permission from Jeffrey, Walla, and

Gutstein (2008), copyright 2008 Oxford Journals.
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step that is necessary when using individual spectra. Eliminating
peak-matching improves the accuracy of the data, and results in
no missing data. Second, it tends to result in greater sensitivity
and specificity for peak detection, because averaging across
N spectra reinforces the true signal while weakening the noise by
a factor of

ffiffiffiffi

N
p

. Averaging enables us to better detect real peaks
down near the noise region of the spectra, and decreases the
chance of flagging spurious peaks that are noise. The simulation
study presented in Morris et al. (2005) demonstrates that using
the average spectrum results in improved peak detection, with the
largest improvement being for low-abundance peaks of high
prevalence. Third, it speeds preprocessing time considerably,
because peak matching is by far the most time-consuming
preprocessing step.

IX. DETERMINATION OF
STATISTICAL SIGNIFICANCE

Given an N� p matrix that contains relative quantifications for
p features (peak/spot quantifications) for each of N spectra/
gels, the next analysis step is to identify which features are
significantly associated with the factor of interest, and that might
indicate potential biomarkers. Significance should be determined
with appropriate statistical tests, not simply ad hoc criteria such
as fold-change, because statistical tests appropriately account
for the variability of the measurements when making the
determinations, whereas simple use of fold-change does not.
The particular test to use depends on the number of groups and
the experimental design of the study. For example, if the goal
is to find proteins that are differentially expressed between
two experimental conditions, then a t-test (or nonparametric
rank-sum test if normality cannot be assumed) can be done for
each p feature, and then all features with sufficiently small
P values flagged as significant.

In this setting, the selection of this P-value cutoff must
be done with care. Because these assays survey hundreds or
even thousands of proteins simultaneously, we expect a certain
number of them to have small P values even if none are truly
related to the factor of interest. In the absence of true differences,
we expect ca. 50 P values of <0.05 for every 1,000 protein spots.
In statistics, this is called the multiplicity or multiple testing
problem. One classical approach to deal with multiplicities is
Bonferroni, which would use a cutoff of 0.05/p to determining
significance, where p is the number of features considered. This
cutoff would control the experiment-wise error rate at 0.05, and
mean that we expect that the probability of at least one false
positive result is 0.05.

Because this criterion strongly controls the false positive
rate, but results in a large number of false negatives, it is
widely considered too conservative for exploratory analyses like
these. Other methods control the false discovery rate, or
FDR (Benjamini & Hochberg, 1995). Controlling the FDR at
0.05 means that of the features declared significant, we expect 5%
or fewer of them to be false positives. There are a number of
procedures for controlling FDR (Benjamini & Hochberg, 1995;
Benjamini & Liu, 1999; Yekutieli & Benjamini, 1999; Genovese
& Wasserman, 2002; Storey, 2002; Ishwaran & Rao, 2003;

Pounds & Morris, 2003; Storey, 2003; Efron, 2004; Newton
et al., 2004; Pounds & Cheng, 2004; Datta & Datta, 2005). Many
of these methods take advantage of the property that the P values
that correspond to features that are not associated with the
factor of interest should follow a uniform distribution, whereas
the distribution of P values for predictive features should be
characterized by an overabundance of small P values. In most of
these methods, one inputs the list of P values and desired FDR,
and receives as output a P-value cutoff that preserves the desired
FDR. Typically, this cutoff is smaller than 0.05, but quite a bit
larger than the corresponding Bonferroni bound 0.05/p. Using the
FDR of 0.05, we still expect that one out of every 20 flagged
proteins are false positives. We must be willing to accept some
false positives so that we have sufficient power to capture relevant
markers. Thus, it is important to validate any flagged markers
(e.g., by Western blotting or multiple reaction monitoring MS).

Instead of performing peak/spot detection and applying
statistical tests to each feature, another alternative is to model the
spectra or gel images using functional data techniques. One
flexible method that has been developed for this purpose is
the wavelet-based functional mixed model (Morris, Walla, &
Gutstein, 2008). This approach does not depend on peak or spot
detection at all, and can search for differentially expressed
regions of the spectra or gel images in a way that takes statistical
considerations and fold-change into account, and accounts for the
multiplicity problem. These methods are more complex and
computationally intensive, and just under development, but show
considerable promise for the analysis of proteomic data.

Power calculations can be done to assess how large a
sample size (number of gels, number of subjects) is needed for a
particular proteomics study. In recent years, various methods have
been developed to perform sample size calculations for settings
where FDR is used to deal with the multiplicity problem (Hu, Zou,
& Wright, 2005b; Jung, 2005; Li et al., 2005a; Pounds & Cheng,
2005; Liu & Hwang, 2007). In each case, the calculations depend
on the reproducibility and assumed subject-to-subject variability
in the data, as well as the magnitude of the effect sizes for the
differentially expressed proteins. If preliminary studies in the
tissue of interest are available, then these data can be used to
estimate the reproducibility (variance across replicate gels) and
subject-to-subject variability (variance across gels for different
subjects), and the effect size (difference between group means on
the log scale) for the set of spots detected in the preliminary data.
Absent these preliminary studies, it is difficult to perform a sample
size/power calculation.

The use of small biological samples in proteomic analyses is
likely to affect the statistical properties of these studies. As we
operate closer to the detection limit of the available technology,
it is likely that technical variability will increase, potentially
reducing the statistical power of the research. This effect can be
mitigated by performing larger studies with more replicates
and/or subjects. Another possibility is to pool samples. By
increasing the amount of total protein per assay, this pooling
can help mitigate the effects of analyzing samples near the
detection limit, but at the cost of losing protein information
for individual samples. Pooling may be an acceptable tradeoff
in studies attempt to find proteins differentially expressed
across groups, but this pooling prevents the possibility of finding
proteins correlated with the subjects’ individual outcomes.
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X. CONCLUSIONS

Proteomics is a rapidly evolving field. Technological advances
permit us to examine a greater fraction of the proteome from
less tissue. Statistical and analytical advances also permit us to
determine significant changes in protein expression and PTMs
from smaller samples with greater certainty and specificity.

However, more progress must be made. For example,
improvements in protein extraction methods as well as the
specificity of protein identification techniques to allow us to
evaluate lower-concentration proteins, or a greater fraction of the
membrane proteins are certainly needed, as are better methods
to characterize more complex PTMs such as carbohydrates.
Of course, such advances should also be coupled to greater
sensitivity so that smaller samples can be assayed.

What options await us on the horizon? Methods such as MSI
or DESI that bypass much of the conventional proteomics
workflow are intriguing, because they minimize the number of
steps needed to identify proteins from tissue. These systems
could minimize obligate protein losses from extraction and
separation techniques, and so perhaps will provide more efficient
protein identification from small groups of cells. Nanotechno-
logy, another rapidly developing area, is poised to make signi-
ficant contributions to microproteomics as novel miniaturized
platforms are applied to protein extraction, separation, and
identification. Further evaluation and development of these
and other promising and exciting methods are needed to allow
researchers to take advantage of the information offered by
proteomics. As we move toward an ultimate goal of examining
the complete proteome from single cells or small cell groups,
the keys to achieving this end will be creativity, flexibility, and
a willingness to take risks and innovate past the ultimate
limitations of conventional approaches.
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